This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007

Cycloartane-type triterpenoids from Sphaerophysa salsula

 Isao Fujiid; Yutaka Ebizuka ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Natural Medicines, Shenyang Pharmaceutical University, Shenyang, China ${ }^{b}$ Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China ${ }^{\text {c }}$ School of Pharmaceutical Sciences, Toho University, Chiba, Japan ${ }^{\text {d }}$ Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan

To cite this Article Zhong-Jun, Li, Xian , Wang, Jin-Hui , Lu, Yang, Li, Wei, Zheng, Qi-Tai, Wang, Cheng, Wang, YuXia, Fujii, Isao and Ebizuka, Yutaka(2004) 'Cycloartane-type triterpenoids from Sphaerophysa salsula', Journal of Asian Natural Products Research, 6: 4, $259-264$
To link to this Article: DOI: 10.1080/1028602031000147438
URL: http://dx.doi.org/10.1080/1028602031000147438

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


CYCLOARTANE-TYPE TRITERPENOIDS FROM SPHAEROPHYSA SALSULA

ZHONG-JUN MA ${ }^{\mathrm{a}}$, XIAN LI ${ }^{\text {a, } *, ~ J I N-H U I ~ W A N G ~}{ }^{\mathrm{a}}$, YANG LU ${ }^{\mathrm{b}}$, WEI LI ${ }^{\mathrm{c}}$, QI-TAI ZHENG ${ }^{\mathrm{b}}$, CHENG WANG ${ }^{\text {b }}$, YU-XIA WANG ${ }^{\text {a }}$, ISAO FUJII ${ }^{\mathrm{d}}$ and YUTAKA EBIZUKA ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Natural Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China;
${ }^{\mathrm{b}}$ Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
${ }^{\text {c School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, }}$
Japan; ${ }^{\text {d }}$ Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan

(Received 24 January 2003; Revised 8 April 2003; In final form 18 April 2003)

Four novel cycloartanes, named sphaerophysone A (1), B (2), C (3) and D (4), were isolated from the ethanol extract of Sphaerophysa salsula (Pall.) DC. The structures were elucidated on the basis of spectral evidence, and the stereochemistry of compound $\mathbf{1}$ was defined by X-ray crystallographic analysis. Sphaerophysone B (2) may be an artifact formed in the isolation procedure.

Keywords: Leguminosae; Sphaerophysa salsula; Whole herbs; Cycloartane; Sphaerophysone A-D

INTRODUCTION

Sphaerophysa salsula (Pall.) DC is widely distributed in Middle-Asian and northwest China. It has been used as a folk medicine to treat hypertension in China [1]. We previously reported the isoflavans [2] and stilbenes [3] from S. salsula, and in continuing our studies on the ingredients of S. salsula we have isolated cycloartanes from the whole herbs of the plant for the first time. This paper describes the isolation and structural elucidation of the compounds.

RESULTS AND DISCUSSION

Sphaerophysone A (1) [4] has a molecular formula $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4}$ based on ${ }^{13} \mathrm{C}$ NMR and positive HR-EIMS data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$, six singlet methyls at $\delta 0.86(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-30), 0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-29), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 1.22(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28), 1.51(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27)$ and 1.54 $(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-26)$ and one doublet methyl at $\delta 1.01(3 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-21)$ were seen. Two olefinic protons appeared at $\delta 6.23(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-2)$ and $\delta 6.88(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}$, $\mathrm{H}-1$), and in the ${ }^{13} \mathrm{C}$ NMR spectrum two carbon signals are at $\delta 127.2$ and 153.4 , as well as a carbonyl resonance at $\delta 204.0$, which are characteristics of the conjugated 1-en-3-one system in the structure. The ${ }^{1} \mathrm{H}$ NMR spectrum also displayed two cyclopropane methylene

[^0]ISSN 1028-6020 print/ISSN 1477-2213 online © 2004 Taylor \& Francis Ltd

FIGURE 1 Significant HMBC correlations of compound 1.
protons at $\delta 0.54(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a})$ and $\delta 1.62(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~b})$-not so evident as a cycloartane. This is because they are deshielded by the conjugated systems in the 1 -en-3-one [5].

There are 30 carbon signals in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$, including three oxygenbearing carbon signals. In the HMQC spectrum, the correlated peaks between proton $\delta 3.94$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$) and carbon $\delta 67.6$ (C-7), proton $\delta 3.71(1 \mathrm{H}$, br.d, $J=9.3 \mathrm{~Hz}, \mathrm{H}-24)$ and carbon $\delta 80.0$ (C-24) were presented, suggesting the presence of two hydroxyl groups. Conversely, another carbon signal, at $\delta 72.8$ (C-25), suggested the presence of a tetra-substituted carbon bearing a hydroxyl group. In the HMBC spectrum of $\mathbf{1}$ (Fig. 1), the proton signals at $\delta 0.54$ $(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a})$ and $\delta 1.62(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~b})$ have long-range correlations with the carbon at $\delta 153.4$ (C-1). In the NOESY spectra of 1, correlated peaks between $\mathrm{H}-7$ and $\mathrm{H}-30$ were found; thus the configuration of the hydroxyl at $\mathrm{C}-7$ is β. The configuration of hydroxyl group at C-24 was determined by X-ray crystallographic analysis. ${ }^{\dagger}$ The results of X-ray analysis (Fig. 2) also support the above conclusions. So the structure of 1 was established as 9,19-cycloart-7 $\beta, 24 \beta, 25$-triol-1-en-3-one (Fig. 3), named sphaerophysone A. On the basis of its ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, NOESY, HMQC and HMBC spectra, all the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were assigned as shown in Table I.

Sphaerophysone B (2) has a molecular formula $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{4}$ based on ${ }^{13} \mathrm{C}$ NMR and the ion peak of HR-EIMS. The UV and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 were almost the same as those of $\mathbf{1}$. The difference between $\mathbf{1}$ and $\mathbf{2}$ was apparent only at the side chain. Analysis of the 2D NMR spectra indicated the presence of two more methyl groups and one more tetrasubstituted carbon than in 1. Analysis of the HMBC and HMQC data indicated that the chemical shifts of C-24 and C-25 were moved downfield to $\delta 84.3$ and $\delta 80.3$, respectively; however, that of $\mathrm{C}-23$ was moved upfield to $\delta 27.2$, suggesting that the hydroxyls at $\mathrm{C}-24$ and $\mathrm{C}-25$ have disappeared. In the HMBC spectra, $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-3^{\prime}$ are correlated with $\mathrm{C}-1^{\prime}(\delta 106.5)$, which is a ketal carbon signal. The configuration of 7-OH was determined by the NOESY spectra of $\mathbf{2}$. Thus, the structure of $\mathbf{2}$ was formulated

[^1]

FIGURE 2 Structure of 1.
as 24,25-acetonide-sphaerophysone A. Because acetone was used as an eluent, compound 2 may be an artificial product derived from 1.

Sphaerophysone $\mathrm{C}(3)$ showed an $[\mathrm{M}+\mathrm{Na}]^{+}$ion peak at $\mathrm{m} / \mathrm{z} 657$ in the positive FAB mass spectrum, and the molecular formula was determined as $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{O}_{9}$ on the basis of ${ }^{13} \mathrm{C}$ NMR and HR-FABMS. The ${ }^{1} \mathrm{H}$ NMR of 3 showed an AB quartet signal at $\delta 0.54$ $(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a})$ and $\delta 1.62(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~b})$. In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ six more signals appeared than for compound $\mathbf{1}(\delta 98.7,78.7,78.3,75.4,71.7$ and $\delta 62.7)$. Upon hydrolysis with $0.5 \mathrm{M} \mathrm{HCl}, \mathbf{3}$ afforded $\mathbf{1}$ and glucose; the glucose was identified by direct comparison with authentic samples by high-performance thin-layer chromatography (HPTLC) and HPLC. The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 showed an anomeric proton signal at $\delta 5.25(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, so the configuration of the sugar is β on the basis of the coupling constant. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ showed the corresponding signals due to

1. $\mathrm{R}=\mathrm{H}$
2
2. $\mathrm{R}=$-Glc
3. $\mathrm{R}=$-Glc-Ara $(4 \rightarrow 1)$

TABLE I ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1}-\mathbf{4}$

Position	$\boldsymbol{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	153.4	153.3	153.4	153.5	22	30.5	30.5	30.5	30.4
2	127.2	127.2	127.2	127.3	23	29.4	27.2	29.4	29.3
3	204.0	204.0	204.0	204.2	24	80.0	84.5	78.5	78.6
4	45.7	45.7	45.7	45.7	25	72.8	80.3	81.0	81.2
5	42.2	42.2	42.1	42.2	26	26.0	26.4	24.3	24.5
6	34.6	34.4	34.7	34.6	27	26.0	23.4	21.3	21.1
7	67.6	67.6	67.6	67.7	28	21.8	21.8	21.8	21.9
8	51.1	51.2	51.1	51.1	29	19.1	19.3	19.1	19.1
9	26.4	26.4	26.4	26.5	30	18.8	18.7	18.7	18.8
10	30.5	30.5	30.5	30.5	1^{\prime}		106.5	98.7	98.5
11	28.3	28.2	28.2	28.3	2^{\prime}		29.0	75.4	75.1
12	32.4	32.4	32.3	32.4	3^{\prime}		27.0	78.7	76.5
13	45.7	45.7	$45.7 ?$	45.7	4^{\prime}			71.7	80.8
14	49.4	49.4	$49.4 ?$	49.5	5^{\prime}			78.3	76.3
15	34.4	34.0	34.4	34.4	6^{\prime}		62.7	61.7	
16	28.3	28.2	28.2	28.3	$1^{\prime \prime}$				105.4
17	52.0	52.0	52.1	52.2	$2^{\prime \prime}$				74.9
18	15.7	15.7	15.7	15.7	$3^{\prime \prime}$				78.3
19	25.2	25.2	25.2	25.2	$4^{\prime \prime}$				70.7
20	37.2	37.0	37.1	37.2	$5^{\prime \prime}$				67.5
21	19.4	18.7	19.3	19.4					

cyclopropane methylene at $\delta 25.2$ (C-19). Three oxygen-bearing carbons at $\delta 67.6$ (C-7), 78.5 (C-24), 81.0 (C-25) and an anomeric carbon signal at $\delta 98.7$ (C-1) were also present, as well as two olefinic carbon signals at $\delta 153.4$ (C-1), 127.2 (C-2) and one carbonyl signal at $\delta 204.0(\mathrm{C}-3)$. The HMBC of $\mathbf{3}$ showed that $\mathrm{H}-1^{\prime}$ of the glucopyranosyl moiety was correlated with carbon C-25 ($\delta 81.0$), indicating that the sugar moiety is linked to the C-25 hydroxy group of 3 . The chemical shift and the shape of $\mathrm{H}-7$ and $\mathrm{H}-24$ signals are similar to those in the ${ }^{1} \mathrm{H}$ NMR of 1 , and so the configurations of $7-$ and $24-\mathrm{OH}$ are β; the configuration of $7-\mathrm{OH}$ was also confirmed by a NOESY spectra. Thus the structure of $\mathbf{3}$ was configured as sphaerophysone A $25-O-\beta$-D-glucopyranoside.

Sphaerophysone D (4) was a white powder from $\mathrm{CH}_{3} \mathrm{OH}$. After hydrolysis with 0.5 M HCl , glucose, arabinose and $\mathbf{1}$ were afforded. The ${ }^{1} \mathrm{H}$ NMR spectrum showed AB quartet signals at $\delta 0.50(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19)$ and $\delta 1.63(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19)$. Two anomeric protons were seen at $\delta 5.19\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 5.08(1 \mathrm{H}, \mathrm{d}$, $J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$), and, on the basis of the coupling constants, the configuration of glucose is β and that of arabinose is α. The ${ }^{13} \mathrm{C}$ NMR spectrum of 4 exhibited 41 carbon signals, 11 more than in 1 (viz. $\delta 105.4,98.5,80.8,78.3,76.5,76.3,75.1,74.9,70.7,67.5$ and 61.7). Two anomeric carbon signals were also present, at $\delta 98.5$ (C-1') and 105.4 (C-1"). 2D NMR (HMBC, HMQC) was applied to determine the connection sequence between the aglycon and the sugar moiety, and the sequence between the two sugars was determined by HMBC correlations, so that 4 was formulated as $25-O-\beta$-D-arabinopyranosyl-($1 \rightarrow 4$)- β-D-glucopyranosyl sphaerophysone A.

EXPERIMENTAL

General Experimental Procedures

NMR data, including DEPT90, DEPT135, HMQC, HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY experiments, were recorded on a Bruker-AMX-300 spectrometer. All spectra were recorded
in pyridine-d d_{5}. HR-EIMS and FABMS spectra were recorded using a JEOL HX110 spectrometer. Optical rotations were performed on a Perkin-Elmer 241 polarimeter. UV spectra were recorded with a SHIMAZU UV-2201. The X-ray analysis was determined with a MAC DIP-2030k diffractometer with graphite monochromator.

Plant Material

Whole herbs of S. salsula were collected in the west of Inner Mongolia and identified by Professor Kang Shuanglong in August 1999. A specimen has been deposited in the Herbarium of the Department of Natural Medicines, Shenyang Pharmaceutical University.

Extraction and Isolation

Dried whole herbs of the plant $(1.8 \mathrm{~kg})$ were extracted with ethanol. After filtration, the extract was concentrated to 1.8 L , and then fractioned with $\mathrm{CHCl}_{3}, \mathrm{EtOAc}$ and $\mathrm{n}-\mathrm{BuOH}$ successively. The CHCl_{3} extract (15 g) was subjected to column chromatography over silica gel, eluting with a light petroleum-acetone mixture. Compound $1(20 \mathrm{mg})$ was obtained when eluted with light petroleum-acetone (1:1). When the eluent was light petroleum-acetone ($4: 1$), $2(6 \mathrm{mg}$) was obtained. The EtOAc extract was also subjected to column chromatography on silica gel and eluted with a $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ gradient system to produce 12 fractions, of which fraction 8 was subjected to HPLC with a TOSOH C18 column and UV detector, with $80 \% \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ as an eluent, to afford $3(17 \mathrm{mg}, 120 \mathrm{~min})$ and 4 ($19 \mathrm{mg}, 87 \mathrm{~min}$).

X-ray Crystal Structure Analysis of 1

Crystal data for 1: $\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, MW $=472.21$, monoclinic, space group $P 2_{1}$, with $a=11.0360$ (2) $\AA, b=19.5970$ (8) $\AA, c=19.8170$ (7) $\AA, \beta=103.537$ (2) $\AA, V=$ $4166.81(24) \AA^{3}, Z=6$ and $D_{\text {calc }}=1.145 \mathrm{~g} \mathrm{~cm}^{-3}$ A crystal of $1(0.20 \times 0.40 \times 0.40 \mathrm{~mm})$ was selected for analysis and the X-ray intensity data measured on a MAC DIP2030K X-ray diffractometer with $\mathrm{Mo} \mathrm{K} \alpha$ radiation. The detector-to-crystal distance was 100 mm . A total of 6902 unique reflections were recorded, of which 6889 were considered on the basis of $|F|^{2} \geq 8 \sigma|F|^{2}$. The structure was solved using direct methods, all the hydrogen and non-hydrogen atoms were located from a difference Fourier map and the parameters were refined. Final R factors were $R=0.073$ and $R w=0.072$.

Sphaerophysone A (1)

Colorless needles from $\mathrm{MeOH} ;[\alpha]_{\mathrm{D}}-21.6\left(20^{\circ} \mathrm{C}, c=0.14, \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $\lambda_{\max }(\mathrm{MeOH})$ 203, $267 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (300.0 MHz , pyridine-d ${ }_{5}$) $\delta(\mathrm{ppm}): 6.88(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-1)$, $6.23(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-2), 2.25(1 \mathrm{H}, \mathrm{dd}, J=13.7,3.8 \mathrm{~Hz}, \mathrm{H}-5), 2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a})$, $1.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.43(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}, \mathrm{H}-8), 2.02(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11)$, $1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 0.54,1.62($ each $1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{H}-19), 1.51(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-20), 1.01(3 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-21), 1.83(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 3.71(1 \mathrm{H}$, br.d, $J=9.3 \mathrm{~Hz}$, $\mathrm{H}-24), 1.54$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-26$), 1.51 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27$), 1.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28$), 0.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-29$), 0.86 (3H, s, H-30); ${ }^{13} \mathrm{C}$ NMR, see Table I; HR-EIMS m/z. 472.3546 (calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4}$, 472.3552).

Sphaerophysone B (2)

Colorless needles from $\mathrm{MeOH} ;[\alpha]_{\mathrm{D}}-37.3\left(20^{\circ} \mathrm{C}, c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $\lambda_{\text {max }}(\mathrm{MeOH}) 203$, $265 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (300.0 MHz , pyridine- d_{5}) $\delta(\mathrm{ppm}): 6.87(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-1), 6.23$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-2), 2.28(1 \mathrm{H}, \mathrm{dd}, J=13.5,3.5 \mathrm{~Hz}, \mathrm{H}-5), 2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 1.50$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}$), $3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.43(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}, \mathrm{H}-8), 1.88(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11)$, $1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 0.57,1.64($ each $1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H}-19), 1.43(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-20), 0.96(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-21), 1.85(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-24), 1.30$ (3H, s, H-26), 1.19 (3H, s, H-27), 1.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28$), $1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-29), 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30)$; ${ }^{13} \mathrm{C}$ NMR, see Table I; HR-EIMS $\mathrm{m} / \mathrm{z} 512.3862$ (calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{4}, 512.3865$).

Sphaerophysone C (3)

White powder from $\mathrm{MeOH} ;[\alpha]_{\mathrm{D}}-32.3\left(20^{\circ} \mathrm{C}, c 0.11, \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $\lambda_{\max }(\mathrm{MeOH}) 204$, $263 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , pyridine- d_{5}) $\delta(\mathrm{ppm}): 6.85(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-1), 6.22(1 \mathrm{H}$, d, $J=10.0 \mathrm{~Hz}, \mathrm{H}-2), 2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 3.97(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7), 2.48(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{H}-8), 1.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 0.95(3 \mathrm{H}, \mathrm{s}$, H-18), $0.54,1.62$ (each $1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.98(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-21), 1.11(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-22), 2.19(1 \mathrm{H}$, br.t, $J=12.5 \mathrm{~Hz}, \mathrm{H}-22), 1.83(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 3.85(1 \mathrm{H}$, br.d, $J=10.0 \mathrm{~Hz}, \mathrm{H}-24), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-26), 1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27), 1.23(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28), 1.00(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-29), 0.86(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 5.25\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.03\left(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.26$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 4.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 3.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 4.42\left(1 \mathrm{H}, \mathrm{dd}, 5.5,11.0, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.54$ (1H, dd, 11.0, 2.0, H-6'b); ${ }^{13} \mathrm{C}$ NMR, see Table I; positive HR-FABMS $m / z 657.3950$ [M + $\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{O}_{9} \mathrm{Na}, 657.3979$).

Sphaerophysone D (4)

White powder from $\mathrm{MeOH} ;[\alpha]_{\mathrm{D}}-47.4\left(20^{\circ} \mathrm{C}, c 0.08, \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $\lambda_{\max }(\mathrm{MeOH}) 206$, $260 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (300.0 MHz , pyridine-d ${ }_{5}$) $\delta(\mathrm{ppm}): 6.85(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-1), 6.22$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-2), 2.24(1 \mathrm{H}, \mathrm{dd}, J=3.5,13.5 \mathrm{~Hz}, \mathrm{H}-5), 2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.50(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-6), 3.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.43(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-8), 1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 0.94(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-18), 0.54,1.63$ (each $1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.94(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-21), 1.08(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-22), 2.05(1 \mathrm{H}$, br.t, $J=12.5 \mathrm{~Hz}, \mathrm{H}-22), 1.84(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 3.80(1 \mathrm{H}$, br.d, $J=10.0 \mathrm{~Hz}, \mathrm{H}-24), 1.54(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-26), 1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27), 1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28), 0.99$ ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-29), 0.85(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 5.19\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.03\left(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.25$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 4.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.48(1 \mathrm{H}, \mathrm{m}$, H-6'b), $5.08\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}\right), 4.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}\right), 4.15(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-4^{\prime \prime}\right), 4.20\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,6.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime} \mathrm{a}\right), 3.63\left(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime} \mathrm{b}\right) ;{ }^{13} \mathrm{C}$ NMR, see Table I; positive HR-FABMS $m / z 789.4408[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{13} \mathrm{Na} 789.4401$).

Acknowledgements

Thanks are due to the Analytical Center of Shenyang Pharmaceutical University for measuring NMR, EIMS, FABMS and UV spectra.

References

[1] Zhou, M., Tao, Y.J. and Xu, S.Y. (1987), Chin. J. Pharm. Toxicol. 1, 258-261.
[2] Ma, Z.J., Hou, B.L., Wang, J.H. and Li, X. (2002), Pharmazie 57, 75-76.
[3] Ma, Z.J., Li, X., Li, N. and Wang, J.H. (2002), Fitoterapia 73, 313-315.
[4] Ma, Z.J., Li, X., Lu, Y., Wang, C. and Zheng, Q.T. (2003), Chin. Chem. Lett. 14, 594-596.
[5] Atta-Ur-Rahman, Nasir, H. and Iqbal, Z. (1994), Phytochemistry 35, 993-1000.

[^0]: *Corresponding author. Tel.: + 86-24-23902286. E-mail: lixian@mail.sy.ln.cn; chinamzj@yahoo.com

[^1]: ${ }^{\dagger}$ Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: + 44-(0)1223-336033) or e-mail: deposit@ccdc.cam.ac.uk).

